Dataset and Analysis for the Commit Messages of the Linux Kernel Out-of-Memory Killer

Mouna Dhaouadi
PhD Candidate
Université de Montréal, Canada
http://www-labs.iro.umontreal.ca/~dhaouadm/

Bentley James Oakes
Assistant Professor
Polytechnique Montréal, Canada
https://bentleyjoakes.github.io/

Michalis Famelis
Associate Professor
Université de Montréal, Canada
https://michalis.famelis.info/
Linux Out-of-Memory Killer

Linux kernel:
- Development is through Git commits
- Culture for motivating/describing changes

Out-of-Memory Killer subsystem:
- When Linux runs out of memory, it calls OOM-Killer to avoid crashes
- Two broad steps:
 - Select “best” task to kill using heuristics
 - Force task to release memory and exit

[Diagram of OOM Killer](https://www.kernel.org/doc/gorman/html/understand/understand016.html)
What is the impact of changes?

- Dev works on "reclaiming used memory from the OOM victim".
- Find interesting commits from the Git history of OOM-Killer.

Suren’s Challenge:
How does my decision impact previously established decisions?
How to make sure I will not cause conflicts with existing rationales?

Suren
Software Rationale

Big corpus of work on representing, structuring, extracting rationale

Useful to:
- understand the system
- learn from mistakes
- reuse solutions
- avoid conflicts

Little (Alkhadi’18, Sharma’21) about its characteristics in **real world systems**

No prior work on developer’s rationale in **code commit messages** of OSS

Alkadhi, Nonnenmacher, Guzman, and Bruegge. “How Do Developers Discuss Rationale?” SANER 2018
Sharma, Savarimuthu and Stanger. “Extracting Rationale for Open Source Software Development Decisions — A Study of Python Email Archives” ICSE 2021
Rationale in the OOM Killer Commit History

• Is rationale information present in commit messages?
• What are the factors that impact it?
• How does it evolve over time?
• How is it structured in commit messages?
Rationale in the OOM Killer Commits

1. Motivation
2. Dataset creation
3. Analysis
4. Conclusions
Rationale in the OOM Killer Commits

1. Motivation

2. Dataset creation

3. Analysis

4. Conclusions
Dataset Creation: Labelling

- Collect 418 commits
- Remove merge commits, filter code sentences
- 404 commits / 2234 sentences
- 3 annotators label sentences

Piloting
- 6 rounds → codebook + protocol
 - Resolve conflicts by discussion
- “Decision”, “Rationale”, “Supporting Facts”, “Inapplicable”

Batch annotations of the rest of the sentences
- Multiple classifications per sentence
- In disagreement, take classification union
- Fleiss kappa: Around 0.66 (fair to good agreement)

Dataset: https://zenodo.org/records/10063089
Examples

Sentence

mm, oom: introduce independent oom killer ratelimit state

printk_ratelimit() uses the global ratelimit state for all printk

The oom killer should not be subjected to this state just because another subsystem or driver may be flooding the kernel log

This patch introduces printk ratelimiting specifically for the oom killer.

Labelling

<table>
<thead>
<tr>
<th>Decision</th>
<th>Supporting Facts</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Decision</td>
<td></td>
</tr>
</tbody>
</table>

Sentence

tlb: mmu_gather: Remove start/end arguments from tlb_gather_mmu()

The 'start' and 'end' arguments to tlb_gather_mmu() are no longer needed for 'fullmm' flushing

Remove the unused arguments and update all callers.

Diagram

Substantial label overlap:
Rationale in the OOM Killer Commits

1. Motivation

2. Dataset creation

3. Analysis

4. Conclusions
Dataset Analyses and Research Questions

Presence of Rationale
- RQ1. How many commits contain rationale?
- RQ2. How much of the commit contains rationale?

Factors impacting Rationale
- RQ3. Does the quantity of rationale reported depend on the commit message size?
- RQ4. Does the quantity of rationale reported depend on the developer experience?

Evolution of rationale over time
- RQ5. How does rationale evolve over time?
- RQ6. How does rationale evolve over time for the five core contributors?

Structure of commit messages
- RQ7. In what order do the categories mostly appear?
Dataset Analyses: Presence of Rationale

Presence of Rationale

- RQ1. How many commits contain rationale?
- RQ2. How much of the commit contains rationale?

\[\text{rationale density\%} = \frac{\text{number of commits that contain rationale}}{\text{total number of commits}} \]

- 98.9\% of commits contain rationale

\[\text{average rationale density} = \frac{\sum \text{rationale density}}{\text{number of commits that contain rationale}} \]

- About 60\% of sentences per commit contain rationale
Factors impacting Rationale

- RQ3. Does the quantity of rationale reported depend on the commit message size?
- RQ4. Does the quantity of rationale reported depend on the developer experience?

Most the commits have fewer than 15 sentences

No statistically significant correlation.

Observations:
- A lot of the short commits (fewer than 6 sentences) have a high rationale density (> 60%).
- As a commit becomes longer, the tendency is between 40% to 60% of sentences to contain rationale information.
Only 5 developers wrote more than 16 commits.

All the other developers wrote fewer than 16 commits; most of them, fewer than 10 commits.

No statistically significant correlation.

Observation:
• More experienced developers' commits have a consistent rationale density near 60%.
Dataset Analyses: Evolution of rationale over time

- RQ5. How does rationale evolve over time?
- RQ6. How does rationale evolve over time for the five core contributors?

Rationale density consistently high at around 0.6.

Decision density consistently **high** (> 0.5).

Supporting facts density typically **low** (< 0.6).

In early and late years **decision** density > **rationale** density >> **supporting facts** density.

In middle years, all converge at around 0.55, supporting facts density always at bottom.
Dataset Analyses: Evolution of rationale over time

Five contributors wrote 189 commits ~half of the studied commits.

Rationale density was consistent around 0.6 for all the years before 2020, but it dropped to around 0.4 in 2020 and 2021 and went up to 0.8 in 2022.

The number of commits varies considerably each year

Usually, the top contributors write short commits (< 8 sentences)
Dataset Analyses: Structure of commit messages

Common Structure:

1. Decisions
2. Supporting Facts
3. Rationale
4. Decisions

Distribution of the categories over the normalized positions of the sentences of the commit messages
Rationale in the OOM Killer Commits

1. Motivation
2. Dataset creation
3. Analysis
4. Conclusions
Rationale in the OOM Killer

Presence

Commit messages *almost always* contain rationale information.

On average, around **60% of the message** contains rationale information.

Impacting factors

The *quantity* of rationale information reported does **not** depend on the commit message *size* or developer *experience*.

Experienced developers have a rationale density around **60%**.

Evolution over time

Rationale density is **consistent** (~0.6).

Decision density is always **high** (> 0.5).

Supporting facts density is **lower** (< 0.6).

More experienced developers write **short** commit messages (fewer than eight sentences).

Structure of commit messages

Developers tend to **start and end** their commit messages with **Decisions**.

Rationale and Supporting Facts appear in the **middle** of the commit, with Supporting Facts usually preceding Rationale sentences.
Dataset and Analysis for the Commit Messages of the Linux Kernel Out-of-Memory Killer

An empirical contribution to better understand rationale in-the-wild.

Software Rationale

Big corpus of work on representing, structuring, extracting rationale

Useful to:
- understand the system
- learn from mistakes
- reuse solutions
- avoid conflicts

Little (Alkhadi'18, Sharma'21) about its characteristics in real world systems

No prior work on developer’s rationale in code commit messages of OSS

Next Steps:
- Improve dataset quality and richness
- Compare with other Linux modules, other OSS projects
- Automate rationale classification

Dataset: https://zenodo.org/records/10063089