Problem Statement

Partial models are effective for automated reasoning. [ICSE’12, RE’12, …]

Are Partial Models effective for human communication?

What we did:
- Developed a new notation: MAV-Vis
 “Physics of Notations” [Moody, 2009]
- Evaluated our implementation of the theory with user study

Designing MAV-Vis

Partial Models: Modeling Design Uncertainty with MAVO

Uncertainty about design decisions – the contents of a model [FASE’12]
- Represent choice among many possibilities
- Can be refined to many different classical models

- May: Element is optional.
- Abs: Element can be multiplied to many copies.
- Var: Element can be merged with others.
- OW: Model is incomplete.

Limitations

- Portability:
 - Annotation language: cannot guarantee symbols won’t conflict!
 - Implemented for Class Diagrams, E-R Diagrams.
 - Porting to other notations not easily automatable.
- But can use with any abstract syntax (MOF)

Expressive Power:
- Less powerful than propositional logic (of course)
- But dependency sub-language can be extended.

No OW:
- OW annotates entire model.
- Need megamodeling or tight tooling integration

No tooling:
- Out of scope here: focus on ideal notation.

Assessment Based on [Moody, 2009]

<table>
<thead>
<tr>
<th>MAV-Vis</th>
<th>MAV-Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>+/-</td>
<td>+</td>
</tr>
</tbody>
</table>

User Study

Goal:
Evaluate our implementation of the principles in [Moody, 2009].

Setup

Design:
- Within subjects to allow comparison and minimize selection bias
- 2x2 Latin square to control for:
- Order of syntaxes (MAV-Vis, MAV-Text)
- Modeling scenario
 - “Hotel Admin” in UML
 - “School Personnel” in E-R

Procedure:
- Tutorial
- Freeform exercise
 - [Reading, Writing] x2
- Questionnaire

Participants:
- 12 unpaid participants, with Bach or CS higher
- Average experience in MAVO: 2.2/5

确认或否决：
“MAV-Vis improves Ease, Speed, Accuracy for reading and writing compared to MAV-Text”

Measurements:
- Ease: Questionnaire responses
- Speed: Task completion time
- Accuracy: Error counts and comprehension scores

Confirm or refute:

References

Conclusion

Next Steps:
- Focus on tooling
- Dependencies sub-language
- MAVOisation of arbitrary languages
- MAV-O three more efficient, overall, more writing errors.
- Solution not necessarily universal: principle of Cognitive Fit (learning styles, expertise)